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Decoherence and classical predictability of phase-space histories
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We consider the decoherence of phase-space histories in quantum Brownian motion models, consisting of a
particle moving under a potentigl(x) in contact with a heat bath of temperatdrend dissipation constant
in the Markovian regime. The phase-space histories are described by quasiprojectors consisting of Gaussian
density matrices smeared over large phase-space cells and are characterized by lj@bthe phase-space
cell together with the sizeMl] of the margin(the region at the boundary bfin which the Weyl symbol of the
projector goes from 1 to)0We generalize earlier results of Hagedorn to show that an initial Gaussian density
matrix remains approximately Gaussian under nonunitary time evolution deriving a bound giving the validity
of this approximation. Following the earlier work of Ons{d. Stat. Phys51, 351(1989] we use this result
to compute the time evolution of the phase-space projectors under the master equation and show that histories
of phase-space samplings approximately decohere, and that the probabilities for these histories are peaked
about classical dissipative evolution, but with an element of unpredictability which is reflected in the increase
of the size of the margir.S1063-651X%96)07905-4

PACS numbegps): 05.40+j, 03.65.Sq

[. INTRODUCTION We usually consider them to evolve in the Heisenberg pic-
ture
Ever since the first days of quantum mechanics, the ques- it ikt
tion of the emergence of the classical deterministic world P (t)=€e"P,e . 1.3

from the underlying probabilistic laws is considered of par- S

ticular importance. It is closely connected to the measure—An element of a set of such histories reads
ment problem, since any measurement involves the interac-
tion of the system under observation with a large
deterministic device.

Different aspects of this problem have been addressed ex
tensively in the literature. Still, there are issues that remain
unclear. Among them are questions on the validity of the P(C.)=Tr(C,poC.). (1.5
description of many-body systems with collective variables
that evolve under quasiclassical equations of motion, thahis measure can be interpreted as a probability only if the
conditions under which classical predictability arises in astandard probability sum rules are satisfied. The set of histo-
guantum system, its possible breakdown at long times anges is then called consistetwr decoherent The condition
how it is affected by environmentally induced noise. In thisfor this can be written in terms of the decoherence func-
paper we will address these problems, as appearing in a widinal, a complex valued function of pairs of histories:
class of open quantum systems, namely, quantum Brownian
motion models. D(a,a')=Tr(C,poCyqr). 1.9

Our analysis lies within the framework of the decoherent o -
histories approach to quantum mechanics, as set out by Grifthe necessary and sufficient condition for the sum rules to
fiths [1], Omnes [2—4], and Gell-Mann and Hartlgs]. The  be satisfied is then
main element of this formalism is the notion of history. A
history is a string of projection operators at consecutive mo-
ments of time. We can build sets of histories, by taking
partition of the unit operators into projectos,(t) at each

C.=P" (ty)...P2 (t2)PL (ty). 1.4

A space of histories has a natural candidate probability
easure

ReD(a,a')=0, a#a’'. 1.7

Ave usually employ the stricter condition

moment of time. These operators satisfy D(a,a')=0, a#a'. (1.8
_ The terms consistency and decoherence of the set of histories
PoPg=045Pq 1.9 are given in the literature to the conditiofit.7) and (1.8),

respectively. That assignment of a probability measure to a
set of histories, allows us to reason with the histories using
> p,=1. (1.20  the rules of classical logic.

@ In general, decoherence appears in physical systems, only
for coarse grained histories. A typical example of coarse
graining is to ignore a number of degrees of freedom of the

*Electronic address: can@tp.ph.ic.ac.uk system, or take projectors into large intervals of position or
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momentum. The decoherence is in almost all physical situamains approximately Gaussian centered around the classical
tions only approximate, that is, the probability sum rules aregpath for a large class of potentiad§x). The validity of the
satisfied only within an order of wheree is a small positive  approximation is quite good as long as the spread in position
number. is much smaller than the scale on which the nonlinearities in

In quantum mechanics the most general proposition for 4&he potential become significant.
physical system at a given instant of time is represented by a We use this result to show, that quasiprojectors onto suf-
projection operator. In classical mechanics the correspondinficiently large and smooth phase-space cells evolve accord-
entity is the phase-space cell. Thus when we want to discud8d 0 the classical equations of motion. The environment
classical deterministic behavior, we have to construct entitie'duces a degradation on the evolved projectors, which leads
that bridge the gap between the two formalisms. essgnually t0 a loss of predictability. . .

This is done through the introduction of quasiprojectors, Finally, we construct the decoherence functional in the

that is, approximate projectors onto phase-space cells. Th ar:<ow_an Ireglrr;et_and ESt?bl'Sh that histories _corrteTpon(il_lng
are constructed in such a way, that their corresponding synj; classical evolution on phase space approximately satisfy

bol in the Wigner representation is a smoothened characte h? consistency condition, and thus approximate determinism

istic function onto some phase-space cell. Omf®] has arises. . ) - .
shown that histories corresponding to classical Hamiltonian This paper is structured as follows: ~ After giving a brief

evolution of sufficiently large and regular phase-space cells(rﬂe.vIeW ofr?uantum BrOWr?'a’: mo_tlog moﬂ:elfl,vwe procelt_ed tt?]
approximately satisfy the consistency conditions. Also the ISCUSS phase-space projectors In Sec. ll. We generaiize the

conditional probability for our system to be found in the cell COOI"ISPI‘UC'[IO_I’] g quqsm:;nec;c;rs frtqm cclnhesrent I\ftatest ct)f
I'; at timet,, if at timet, it was within the celll';, is almost MNE, using ‘>aussian density Matrices. in sec. 1vV-we state

unity, providedI’, is obtained fromI'; through evolution a thgore_m on the degree qf vaI|d|t_y of the Gaus§|an approxi-
according to the classical equations of motion mation in our models, using which we establish how the
y guasiprojectors we constructed evolve in Sec. V. We con-

In this paper, we are interested in generalizing these re truct histories corresponding to classical evolution in Sec
sults for a class of open systems, namely, quantum Browni uct nistori responding ical evolution I :
| and discuss their decoherence properties. In the last sec-

motion models. These consist of a particle moving under a . .
potentialV(x) and coupled to a large system which is taken'ON We summarize and d'SC.USS our resullts.
as the environment. Usually we take as an environment a The nqtg’qon we will use 1S as follows: Whenever' the're
collection of harmonic oscillators in a thermal state. By trac-> 2 p055|b|I|tX of confL_|5|on the reduced de_n5|ty matrix will
ing out the environment degrees of freedom, we obtain a&e denoted ap, otherywse plainly ap. The Hilbert space of
effective evolution equation for the density matrix of the (he wave fun_cuons will be denoted hlsﬁar_]d t_he one of the
particle. The coupling of the environment to the particle isdensny matrices gnder the H|Ib¢rt-Schmldt inner product as
contained within two effects: dissipation and diffusion. H,. We write th? inner product ifl,, using the Dirac nota-
We concentrate on a particular case of those modelé'cfn (i) and inH, as (py,py). The act[qn of an operator
namely, when the evolution equations are Markovian. Thisg on an element ofl, V.V'" b? denoted as”|p]. The vo_Iume
corresponds to the case of the ohmic environment at hig fa phgse-spa_ce cdllis yvntten[l“]. In Se_c. vV gnd in the
temperature. This is mainly due to the fact that only in the ppendix we will use units such thatis dimensionless.
Markovian limit can we write the decoherence functional in
terms of the reduced density matrix. II. QUANTUM BROWNIAN MOTION MODELS

These models can be used as prototypes for more compli- We first give the basic features of the model, within

cated systems, as, for instance, particle detectors in the early . . )
Y P hich we are going to discuss the phase-space decoherence.

universe or continuous measurement. What is more interesv-v d ticle of o ; der the infl
ing for our approach, is that we can model this way the € consider a particie of masé moving under the infiu-

effective behavior of collective or hydrodynamic variables, €"¢€ of_a pot_entia‘V(x) and i_n contact with a heat bath of
We can identify the degrees of freedom of the particle Withharmonlc osc!llators. Assuming a "”?af de_pendence of the
distinguished variables in a many-body system, like, for in.Spectral density of the bath an (ohmic environmentthe

stance, the center of mass position and momentum of a ma&gduced density matrix for the particle evolves under the

roscopic body, while the environment represents all the ig_master equatiof9—11]:

nored degrees of freedom like the positions and momenta of

2 2
its constituents. ap__ h (a_p_ ’9_’J> _ y(x—y)( op_ a_p)
The issue we are concentrating on, is the conditions under ot 2Mi | ox?  ay? ax ay
which the description of the system with the classical dissi- 1 D
pative equations of motion can be accurate. Essentially we + = [V(x)=V(y)]p— 2 (x—Yy)?p, 2.1

want to prove approximate determinism for quantum dissi-

pative systems. Our approach is rather different from other

authors that have discussed decoherence of phase-space hifiere we seD =2M ykT.

tories[6,7] or configuration space histori¢8] and closer to In deriving this equation we have assumed a high-

the spirit of Omne [3,4]. frequency cutoffA in the spectral density of the environ-
Our main results can be summarized, as follows: Wement, which is essentially the inverse of the response time of

establish the degree of the validity of the Gaussian approxithe thermal reservoir. The master equation is actually valid

mation for the Markovian regime of quantum Brownian mo-in the Fokker-Planck limik T>#A and for timest>A"1,

tion models. We show that a Gaussian density matrix rewhich is the Markovian regime.
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In operator form the master equation reads it is of the order of(i/L )2, whereL, 7 are typical length
and momentum scales for our cell. We will return to the

d [x.{p.p}]— D [x.[x.p]] issue of regularity in more detail later.

in- PP p2 LHLSP The quasiprojector® have a number of interesting prop-

) erties[3]:

=“[p]. (2.2 (1) Their trace is proportional to the volume of the phase-

. . . . . space cell.
Since this master equation describes a Markovian process[3

the time evolution of the initial density matrix can be repre- TrP=[T]/(27h). 3.3
sented by the action of a one-parameter semigroup with gen-

eratorZ on the state space. We will represent an element of (2) They are very close to true projectors:

the semigroup ag”' and the time evolution of an initial

02
erV(x),p -

(7p_1
at ik

density matrixp, ase”'[ po]. Tr|P—P?|<ce, (3.9
. PHASE-SPACE PROJECTORS wherec is a number of the order of unity.
_ ) (3) For two different projectors on the same phase-space
A. General considerations cell P and P’ with corresponding parameteesand € we

In order to discuss the phase-space histories, we have fave:
find elements of the quantum mechanical formalism that cor-
respond closely to the notion of a phase-space cell, at least in TrlP—P’|<c(e+€'). (3.9
the macroscopic domain. Since any proposition about a
physical system at a given instant of time can be represented (4 If I'1, I', andI';NT'; are three phase-space cells and
as a projection operator, what we need is a class of operatofg+P2: P12 quasiprojectors associated to them, the operator
that project onto the subspace of physical states which havé” =P1P2— P12 is bounded in trace norm by:
position and momentum well within some phase-space cell [T]
r - _ _ Tr|6P|<K =— (HILP)*, (3.6
Position and momentum cannot be simultaneously speci- 2mh
fied with arbitrary accuracy, so we must consider approxi- )
mate projection operators. We call an operara qua- Where[I']=sup[I';][T;]), a>1/2 andK of order unity.
siprojector into a phase-space cEllif any wave function
well localized insidel” (outsidel’) is an approximate eigen- B. Coherent state quasiprojectors

function of P with eigenvalue 10). The construction of such One particular way to construct quasiprojectors is through

operators is particularly easy in the Weyl representation, ifhe yse of coherent statg3]. Consider the Gaussian wave
which we associate withP a function f(x,§) on a mock  ¢,nction:

phase space, which we call its associated symbol

2 )1/4 F{ 2
X)=|=—1| expg— - (L+ir)(x—q)?+ipx/f|.
f(x,g)zf dy exp(—igy/h)<x+ X|P|x—X>. (3.1 Gap(X) (277% a7 ¢ Jx=a)™+ip
2 2 3.7
In general, a functiori(x,£) on a two dimensional phase- This induces a metric

space is called a symbol of order, wherem is real, if its
derivatives of all orders have the following bounds: S ) f 5

d(x,p)= E X<+ m p (3.8

%P (X, &)|<C 5(1+ X2+ £2)M=a=PR2 (39
xY¢ B

on phase space with respect to which one can give a precise
definition of a regular phase-space d&l4].
We call a phase-space cell regular to oreewith respect
to one particular family of coherent states if:
(1) The curvature radii with respect to the metdof o'
are larger than in absolute value.
(2) The margin of the celM which is defined as

where C,; are constants called the seminormsfofNote
also, thatx and ¢ are in dimensionless unitscaled by some
typical dimensiond. and%’).

One possibility is to take for the symbol corresponding to
a quasiprojector on a phase-space telthe characteristic
function of the celll". This does not define a good operator
because of the discontinuity at the boundary so instead, we
consider a smoothened characteristic funcfidh That is, M= N e(xpl)
we takef to be equal to 1 inside and to 0 outsiigexcept wper
in a small region along the boundary Bf where it interpo-
lates smoothly from 1 to 0. This transition region is calledwheree(x,p,!) is the ellipsis defined by
the marginM of the cellT". In order for the operator to be
well defined, the phase-space cell has to be regular; loosely e(x,p,1)={(x",p")|d(x—x",p—p")<I?}
speaking it should not develop structure on the scafearid o
the volume of the margiM should be much smaller than the satisfies M]<€[I']. ,
volume ofI". The parametee=[M]/[I'] is a measure of the (3) The numbers and 1 satisfye ?'"<e.
validity of the approximation. For a sufficiently regular cell  If I" is a regular cell to ordee then the operator:
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dqdp p h
P= ]\ 2 9a0)(Gud 39 d<x,p>=w2+—z> LG8

m AF| 1+ —r?
aF "

is a quasiprojector associated wlthWe can readily see that
its symbol With respect to this metric, we can define the notion of
the margin of a phase-space cell and the notion of regularity

d (up to ordere) as before. We define the operator

d
f(x, &)= Jr ghpexp{— zz—ﬁ (1+r?)(x—q)?

_ ( dqdp .
P—frmp( ,F,r,q,p). (3.14)

2 , 231
— 75 (E=p)*= —— (x=a)(¢-p)
This is a quasiprojector associated with the ¢ell

(3.10 To see this, consider its symbol,
2
is up to corrections of ordez™'" equal to 1(0) inside (re- 2 dgdp pY 3 )
spectively, outsidel’ except for the margim where it in- f(x,&)=(2/4F) L e T 1+ T
terpolates between those two values. It also satisfies the con-
ditions for being a symbol of arbitrary negative order. , 1 )
X(X=Q)"= 5 (£-P)
C. Generalized Gaussian projectors s
r
We are mainly interested in the time evolution of the qua- ~ohE (X=qQ)(&—p)|. (3.19

siprojectors, when our system is under the influence of the F

the:mal en&nrlongent{ at?] in the C.?S(?t of fth:]antuml I?.roww]aqt is a symbol of arbitrary negative order and has the form of
mation modeis. Due 1o the nonuntanty of the evolution, €y, -y, 5q¢ general Gaussian smeared characteristic function

operator in timet will take a form that cannot be related to associated to the cell. We can verify that it takes value 1
the quasiprojector€3.9) in a straightforward way, as ifB]. ) 2 where

Omnes has shown that under a large class of potentials, thi?) inside (outside I" up to corrections of ordeg " ,
density operators of the formgg,){(gq,l evolve approxi- I'is defined as before but with respect to the me@id3. It
mately into operators of the same form but belonging to 4nterpolates between those two values only in the margin,

H : 7112
different family of coherent statelifferent parameters, ~ Which has a width of order7™=. .
andr). The nonunitarity of the evolution in our case implies How can we compare this class of projectors to the ones

that an operator of this form become mixed. Therefore welefined th_rough the gengral Gaussian ste@ekl)? A cohe_r-

need a larger class of Gaussian density operators. ent state is localized within a volume of ord&f2 and is
We propose a class of quasiprojectors, that are define@Ple to distinguish points found within a volume of this

through Gaussian density matrices, which we choose to p6§_|ze. For this reason we expect the margin associated with a

rametrize by the set of five nUMDErS F.r.q.p) as projector onto a phase-space cell toﬂhave an area of érder
y %E.r.0.p) and the parameterto be of order#/L7)*2 This estimation

S \2 S [x+y 2 F is backed by a detailed calculation using microlocal analysis,
<X|P|y>:(m) F{— 2% (T—Q) BT (x—y)? that is, we can verify that this order of magnitude for the
parametek is the one that gives the best approximation of a
quasiprojector to an exact projec{&,4].
, (311 On the other hand the Gaussian density maf8ii1) is
localized within a volume of orderZ. Therefore we expect
which is defined foi><4F in order to satisfy the positivity ~the width of the margin to be of order and the parameter

requirement. For these density matrices we can verify that,€ to be of order(.#/L)"* for the class of projectort3.14).
This is clearly, not the “best” quasiprojector one can asso-

ol s=(Trp?) = (214F) 2= (h12 72)<1, (3.12 ciate to a phase-space ceII,l but ’thisilzggneralization iS neces-
sary. As long as the quantit§2 Z/f)"'< is of the order of

irs

2h

X+y

2

(x=y)+i & (x-y)

where. 7 is the Wigner function area defined as: unity we still have a good approximation for a phase-space
projector. The larger the value o¥ is, the worse the degree
A= (Ag)*(Ap)2-Cp, of approximation to a true projector is. We are therefore
going to refer to projectors with minimum value of =#/2
with (the ones constructed from pure Gaussiassthe maximum

resolution projectors.

We will see that the time evolution of an initial general-
ized coherent state remains within a good approximation a
Gaussian density matrix, with time increasing the value of
.7 is a measure of the phase-space area in which the Gaussé. We know from the study of linear systems that the value
ian density matrix is localized. of .7 increases polynomially in the short time limit, to be-

This density matrix defines a metric on phase space in anome constant for times much larger than the relaxation time
analogy to(3.8) v 1[12]. Its asymptotic value corresponds to the uncertainty

1
Cpq=7 {(@=(a)(P—(P))+(P—(P))(a—(a))).
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due to thermal fluctuations, and is typically many orders of SF
magnitude larger than the quantum ones. Still, for suffi- (m
ciently large phase-space cellg is much smaller than the

size of the cell, the quantity remains quite small and our there exists<C>0, 5>0 for which

operatorg3.14) are still close to true projectors. On the other

hand, for smaller cells for which<LZ<. %, there comes [ po]—p(Z(t),F(t),r(t),q(t),p(t))]|us<CA™ 4.1
some time(usually of the order Ofy_l), when the evolved

quasiprojectors cannot any longer distinguish the phase¥heneveri<é. We denote=3a—1. _
space cell, since the size of the margin has become essen- 1€ quantitiesX (t),F(t),r(t),q(t),p(t)) are solutions to

-1
) <N# 2P

tially as large as the whole of the cell. the system of differential equations:
p
IV. TIME EVOLUTION “wm “3
OF GAUSSIAN DENSITY MATRICES .
_ , , _ _ p=-V'(a)—2yp, (4.3
We are interested in the evolution of the Gaussian density
matrices(3.11) in the class of quantum Brownian motion .1
models described by the master equati®ril). As we men- 2=y 37, (4.4
tioned, this expression is valid in the Markovian regime
(high temperature and ohmic environment 1 2D
For linear potentials, we knowWsee for instanc¢9,12)) F=—3Fr—4yF+—, (4.5
that the propagation is Gaussian, and an initial Gaussian den- M h
sity matrix remains Gaussian centered around the classical S22 5
path. Also in the case of zero coupling to the environment f=———— — F—2yr+ = V@(q), (4.6)
(unitary evolution Hagedorr[13] has established that a gen- 2M M 3

eralized coherent state retains its shape for a period of time L .
and its center follows the classical equations of motion. Th&inder the initial conditions:

f thi imation is of th LA, wh
erfor of this approximation is of the order GiiL.7)", Whete (s (0),F(0),r(0),(0),p(0)= (20,Fo.0.00.Po). (4.7

We seek a generalization of these results. We want tQote that we have used dimensionless units withl and
show, that for a large class of potential§x) the master p—q

equation(2.11) respects the Gaussian nature of the density The proof is based on the observation that the generator
matrices(3.11) and that their centers follow the classical + can be split into two parts, described in the
equations of motior(with dissipation. We shall show that Appendix: %=+ 7/, where.” is the generator that cor-
this is a good approximation as long as the spread in positiofesponds to the Brownian motion of a free particle atich
is sufficiently small and that the error is of the order of generator that contains only the effects of the potential. The
(/L7)" as in the purely Hamiltonian case. action of.”” can be exactly determinedor instance, using
the density matrix propagator which can be exactly com-
puted for the free particje while the action ofZZ can be
approximated with a quadratic expression. Thus we get ex-
In this section, we present our result in the form of apressions foe”![ p,] ande”[ po] which can be combined to
theorem, a detailed proof of which can be found in the Ap-give an expression fa”[ p,] through the use of the Trotter
pendix. We assume that the potentig(ix) satisfies: product formula. The proof closely follows the one of Hage-
(1) V(x) is continuous and uniformly Lipschitz on dorn[13], with the main differences being the nonunitarity
compact subsets of? (i.e., given anyR>0 there existk  of the generator/ and that our Hilbert space is the one of
such thafV®@(x) - V(y)| < B|x—y| wheneverx|<R, |yl  the density matrices under the Hilbert-Schmidt norm.

A. The theorem

<R). , The proof involves taking a Taylor expansion of the po-
2 [V(x)|<eM¥, tential and keeping only the quadratic terms. Therefore our
(3) V(x) is bounded from below. results are exact for the harmonic oscillator and the free par-

Assume that att=0 the system is in the state ticle case.
po=p(Z0,Fo.T0,00,Pp). The exact solution to the master
equation(2.11) can be written formally as B. Uncertainties

pi=e"Upol, We can write the uncertainties in positidig and in mo-
mentumAp as well as the correlatio@, associated with
the Gaussian density matrix in terms of the paramelers
where Z is the generator of the one-parameter semigrougndF:
acting on the state space, which is determined by the dynam- ’
ics. (AQ)“=hlZ, 4.9
Then we have the following theorem:
Theorem:; For eachT>0, N>0, p<1/2, a<(1/2)—p and (Ap)2=
p)-=hF
0<t<T, such that

2 2
1+ E re/, (49)
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hr within a very good accuracy for times much smaller than the
Cog=— 5 (4.10  typical time scale in our dynamics: *. For larger times, the
validity of the approximation, depends heavily on the length
From this we can see the interpretation of the paramaters ScaleL on WhiCh\,/(z)(X) varies. If this length scale is much
F, andr we used to parametrize the Gaussian density matril2rger than the size of the thermal fluctuations the approxi-
ces. Clearly® 1 is a measure of the spread in position and mation will t‘?'d for time scales some orders of magnitude
of the correlation between position and momentdfi is ~ 'arger thany = If this is not the case, the approximation will
proportional to Tp? and therefore is a measure of the non-Nave broken down much earlier. Within a few times' the
purity of the state. The original paramet&rsF, r have been particle will _tend tow_ards the state o_f thermal equilibrium.
more convenient in the course of the proof, but in order to/Ve can clarify those ideas by examining the simplest case of
have a clearer interpretation of the results, we shift our at& SyStém moving in a potential exhibiting only weak nonlin-
tention to the set of variable&q,Ap,C,,. Within our ap- earities
proximation they evolve according to the equations:

V(X)=3iM w?x?+ px*. (4.19
d 2
gt (Aq)zzm Coq> (4.11 This effect of the nonlinearities becomes significant at
length scales of the order of
d M w2\ 12
S (Ap)2= = 4y(Ap)*~2C,V®(q)+ 2D, (4.12 L=< ;’ ) .

d 1 2 o /(2 Assuming weak coupling to the environment, the uncertainty
at Cra=py (AP)7727Cpq— (A1) VP, 413 G position is given in leading order toand y/w [12]

We notice, that the diffusion coefficient appears only in - 2420t kT _an
the equation for the momentum uncertainty, and at short (Ag)"=(Ag)%e '+ —5 (1-e ™), (419
times is the dominant term. This means that the spread in
momentum is more effective than the corresponding spreaglith (Aq’)? containing the effects of the unitary evolution.
in position, which depends on the diffusion coefficient only The Gaussian approximation will break down wheq=L.
indirectly. It is also important to stress the reluctance of par\we can readily verify that forp<w*kT, Aq will remain
ticles with large mass to undergo a rapid growth of the fluc-much smaller thari., while for larger values ofy the ap-

tuations. proximation will break down at a time scale of the order of
—1
v .

C. Validity of the approximation We should note, that for a large variety of physical sys-

tems, it is not necessary to assume weak nonlinearities, in
order to have a large value af. Systems with potentials
corresponding to a spatial average of many microscopic de-
grees of freedom have typical values fothat can be said to
correspond to a macroscopic scale.

A relevant question is to give an estimation of the error
ﬁerm C#™ of our approximation. For the case of the closed
system, a very rough estimation is

The essential requirement for the validity of our approxi-
mation is that the quantit(®,+4F)/>F remains sufficiently
large through the evolution according to Ed4.2)—(4.6).
Since we have tha&<4F, this is equivalent to saying that
remains sufficiently largémuch larger tharN42P). But a
large value of2 means that the particle is well localized in
position. We can thus say, that while the state remains we
localized in position(that meansAq<N~Y%27P)  the
Gaussian approximation will be quite good. When, mainly ¢
due to the diffusion, the state of the particle has become fﬂf dt [V (q(t))|Aq(t)
spread in space, the large scale structure of the potential 0
becomes important and even weak nonlinearities will con- ) ) o
tribute significantly in the evolution, thus rendering the in dimensionless unitf3]. When considering the open sys-

Gaussian approximation invalid. Note, that the constants €m case we can see from the detailed study of the proof, that
andp satisfy: a term of Tp?<1 enters the right hand side of the inequali-

ties, thus rendering our approximation better. Also for the
A<3-3p, U-shaped potential the effect of the dissipation is to make
the values of the third derivatives of the potential smaller in
which shows that the larger our tolerance for the spread imbsolute value. For the time, that the increase in the uncer-
position, the larger the error stemming from our approxima-ainty due to the diffusion is small, we expect our approxi-
tion. In general, we cannot say much about the time when theation to be better when taking into account the coupling to
Gaussian approximation breaks down, since this dependbe environment. On the other hand, at times larger than the
crucially on the form of the potential, the particle mass andtypical time where thermal fluctuations overcome the quan-
the position and spread of the initial Gaussian. tum ones, the more effective spread of the density matrix
Excluding cases of potentials varying significantly in the makes the effect of nonlinearities more important, and thus
microscopic scale or potentials where tunneling effects cameduces the accuracy of the Gaussian approximation. There-
be important, we expect the Gaussian approximation to holfbre we arrive at the following picture:
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At times less tharh/ykT)Y? the Gaussian approximation 9 2 52

is better when the environment is taken into account. 7t P(x,y)= oMi
At larger times because of the effects of diffusion, the

approximation becomes gradually worse, since diffusion be- Ja 9

gins to strongly affect the uncertainty in the position. + V(X—Y)(a— @) P(x,y)
Finally we should make a remark on a problem that may

arise when having a closer look at the proof of the theorem. 1

We know that the master equati¢®.11) does not preserve ~i7 VOO =V(y)JP(xy)

positivity at very short time scald¢42,14]. This is a result of

5 P

taking the cutoffA to infinity. Our proof, being based on a D 5

discretization of the time and taking the continuous limit in —2yP(XY) = 72 (x=y)P(xy). (5.4
the end, might be inadequate for a class of initial states. We

can avoid this problem, by adding a terfip,[p,p]] in the Comparing this equation to the one fpr we notice the

master equatiofiike the one appearing ifL5]). The master ~change of sign in the terms corresponding to the dynamical
equation thus becomes positive and this term does ndtvolution and the appearance of the extra ter@wyP. Be-
change the nature of the proof. In the end we caryssual ~ cause of this term the equation fails to preserve the trace.

to zero, an approximation that is valid in the high tempera-This is an expected feature, when studying the evolution of
ture regime. quasiprojectors, since classical dissipative evolution does not

preserve the phase-space area.
We can study now the evolution of Gaussian operators

V. EVOLUTION OF QUASIPROJECTORS W(,F,r,q,p):

In this section we study the time evolution of the qua- 12 S [x+y 2 F
siprojectorsP introduced in Sec. Ill. We shall show that as (X|W|y>=(m EXI{ T 2% T—Q) T 2% (x—y)?
long as the corresponding phase-space cells remain large and
regular, they evolve according to the classical equations of irs (x+y ip
motion with dissipation. One expects that the coupling to an Tl )(X—Y)+ 7 x=y)|. (59

environment will induce a degradation in the quasiprojectors

as they evolve. This is reflected in an increase of the size dt is straightforward to show, using the treatment found in the

the margin, which implies a loss of predictability. appendix, that within an error dE(%/L7)" in the Hilbert-
We work in the equivalent of the Heisenberg picture for Schmidt norm,

open systems. That is, we assume that the density matrix is

time independent and that the effect of the evolution is con€ LW(Z0,Fo,0.d0:Po)]

tained in the operators. Let us further assume that in this _

picture a(boundedl operatorP evolves under the action of = JOWED),F(D).r(1),a(t).p(D)), 5.6

an one-parameter semigroup with generatét The simple  where S.(t),r(t),F(t),q(t),p(t) are the solutions to the

correspondence betweew’, and 2 that exists in unitary equations,

evolution is lost here.

We determine# by demanding that the probabilities are . P
the same in both pictures. This means a=—w (5.7
p ( p=2yp+V’'(Q), :
Tr(e.,/ét[P]p) =Tr( Pe[t[p]), (51) p p4Y (Q) (5 8)
s-- Ly (5.9
=——3°, .
which is equivalent to demanding M
. 1 2
Tr(.Z[Plp)=Tr(P. %[ p]). (5.2 F=— ZFr+ayF+—, (5.10
Having the expressiof2.11) for it is easy to show that: P= 2_r2+ 2 F+2yr— 2 v@(q) (5.10)
2M M 3 '

under the conditions

(2(0),F(O),r(0),q(0),p(O))z(Eo,Fo,ro,QO,po).
(5.12

&P_ W[ P]= ! p2 Vv P
E—.,//y[ 1= 3 m‘f’ (x),

Y
T {p.[P,x]}
The equations fog andp are the backwards classical equa-

D
— 72 [P (5.3 tions of motion(not the time revergeand J(t) is the Jaco-
bian of the transformation fromgg,pg) to (q(t),p(t))

The relation of this equation to the one fpris more J(t)= w:em_ (5.13
clarifying in the position representation: (0o, Po)
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Now let us consider the evolution of a quasiprojed®er, We can say that the effective region in phase space occu-
associated with a phase-space telthich is regular to order pied by a projectoPy consists of the cell', plus the margin.
e. Consider an operator that &:0 has a maximum resolu- Thus the effective region the projector occupies increases in

tion in the phase space. We thus havé-=a0 a way that has nothing to do with the corresponding classical
dood equations of motiorfunlike the shrinking due to dissipation
_ Poddo which is a classical featureA measure for this increase,
Pr= fr 27h W(Z0.20/4r0.0o-Po)- (514 iy can be attributed solely to the diffusion, is
As it evolves under the action ef””! this projector becomes [T J+[M']
U=
-] f dpodqo [Ft]‘l‘[M]
e [Pr]=J(1) " 20k 1t e , AR "
g =1+¢€ —e=1+ 7 [1— (Al 2)Y?]. (5.2))

XW(E(t)!F(t)vr(t)!QCl(_t)lpcl(_t))

(5.19 We can view this result as follows: Sufficiently coarse
grained observablg@rojectors onto large phase-space gells
evolve under classical deterministic equations plus the action

(RILA) TIPy. of noise terms. These terms, stemming from the ignored de-
grees of freedom of both the system and the environment

Performing a transformation from q§,po) to  induce an error of ordet’ to the classical equations of mo-

within an error of order

(Aci(—1),pci(—1)) we readily verify that tions. The parameter measuring the size of the noise terms
dqdp and correspondingly the loss of predictability is the Wigner
e [Pr]= f 5 WS (1),F(1),r(t),q,p) function area# [12], which in general is an increasing func-
r, &m tion of time.

It may be shown that in the short time limit<y 1) for

=Pr,+0(e), (518 4l initial operators(5.14) it is given by[12]:

wherel’, is the phase-space cell obtained frénthrough the A2 32 y2AT2

classical equations of motion art=(.Z/L»)"? determines ()= —+ — t4 (5.22
the degree of regularity df,. Here we have 4 3 7
,_hAF(t) We obtain the same result, when considering the backward

= 2 W (5.17 time evolution of the quasiprojectors.

is the Wigner function areaP’ is clearly another qua-

siprojector associated with the phase-space IcellEssen- V1. HISTORIES
tially we have A. Construction of the decoherence functional
e [Pr]—Pf lps<c(RILAYTrPr.  (5.18 Using our previous results we now construct the phase-
t

space histories for the Brownian particle and study their de-

From (3.4) we know that within an error of’, P} is equalto ~ coherence properties. We have found how the quasiprojec-

Pr., Where Py is the quasiprojector defined through the tors associated with phase-space cells evolve in time. We can
Gatussian ope;ator with parameté®s, 45,1 o) use this knowledge in the calculation of the decoherence
e 22ToTLI0)

functional. Our results are of use only when it can be written
||Pl,—‘t_ P[‘1||HSSTr|P1,—*t_ Prt|<C,E,TrPF[. (519) as:

r — t D)t~ 1 n
Assuming that during the evolution the error of the D(a,a )_TrS[Pant:_l['"PErl)Kt;[p]Par']"']Par']] (6.2)
Gaussian approximation is less thah we conclude from

(5.18 and (5.19 that in terms of a superoperat(bﬁ' in the space of the reduced

e [Pr]—Pr||us<Ce'TrPy. (5.20  density matrices. This is actually valid in the Markovian re-
' gime[16].
This is our main result: A projectoPr onto some In the Caldeira-Leggett model the environment is taken to

phase-space cdll evolves under the action of the dynamical be essentially infinite and thus the environmental degrees of
semigroup into a projectoPr, associated with the phase- freedom remain very close to the state of thermal equilib-
space cell',, which is obtained front through the classical rium. The correlations created will in general be of the order
’ _1 . . -
dissipative equations of motion. This is an approximate re®f A~ and since the evolution has no memory their effect
sult, accurate within an error of ordef. This parameter Will be negligible in a time scale of ordey =. Remembering
increases with time solely because of the noise induced b{at in our regime we have assumk@>7%A, we conclude
the environment. This implies that the margin of the qua-that if the time interval between the two projections satisfies
siprojector increases with time evolution and the predictabil-
ity becomes gradually worse. t,—t;>O0(A/KT),
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we can write the decoherence functional for two-time histo-Therefore for a macroscopic phase-space eaff a small
ries as number and decoherence is good. It is clear that the degree of
, L 1 decoherence is better in the case of a Hamiltonian system.
D(a,a’)=84,q;Tr(Pg e /‘(tzftl)[Pal]Pthar), (6.2  We can thus compute the conditional probability, that the
! particle being withinl’; at timet, will be within I', at time
or using the definition of the generato# t,. This is clearly,

D(a,a’)=5azaéTr(e"Mtftl)[Piz]Pil'p"thii). (6.3 p(Iy,t1—T5,t)=1-0(e). (6.9

Therefore up to an order of there is good agreement be-
tween the predictions of classical and quantum dynamics for

p(C,)=Tr{(e"2-W[p2 1pl 5 Pl (6.4)  the evolution of the Brownian particle. This agreement is

a a2 0(1 1 _ .
best when the phase-space cells are regular and the time

to the historyC,, if the probability sum rules are satisfied. A €volution preserves this regularity. These results are inde-
sufficient condition for this is the vanishing of the off- Pendent of the initial state of the system. One might expect
diagonal elements of the decoherence functional. that the degree of decoherence would be in an inverse rela-

tion to the degree of predictability. Here, they are essentially
the same, as in the case where the environment is not
present.

The sum rules are not satisfied exactly in our case, but The extension of this result to-time histories is straight-
only within an error of ordete. A good condition for this  forward. Consider the histor€=(Py,t;;P,,t5;...;P,,ty)

We can assign a probability measure

B. Approximate decoherence and determinism

approximate consistency is where P; is the maximum resolution quasiprojector associ-
 Mtrp? bl ~ bl ated with a celll; andT’;, 4 is obtained fromI’; through the
[Tr(e™ 2" [Paz]PalptlpaiN classical equations of motion. We construct fr@ma set of

histories by replacing one or more of tRg's V\//ith P;, and
1 P12
Mt p2 1pl ~ bl define the parameter=max. #(t;—t;_,)/LZ|"“ If we as-
<Ea21 Tr(e “ [Paz]PalpHP%)' (6.5 sume that for the intermediate times
Let us concentrate on the particular case of histories that min(t; ;1 —t;)>O(A/kT)
correspond to the evolution of phase-space cells along the _ _
classical trajectories. That means, we consider the set of hignd that the dynamics preserve the regularity of the cells to
toriesC,=(P,P,) andC,=(P,,P,) whereP, andP, are  an ordere, then this set of histories satisfies the probability
quasiprojectors associated with the célisandl’, andI', is ~ summation rules to this order.
the cell obtained from the classical evolutionlgf. In order

to achieve minimum error in our estimations we restrict our VIl. CONCLUSIONS
quasiprojectors to have minimum resolution in phase space. i _ o )
The condition(6.8) reads In this paper, we have studied histories corresponding to
o the evolution of phase-space cells in quantum Brownian mo-
Tr(e—.%(tz—tﬂ[pz]pl'ﬁtlpl) tion models with ohmic dissipation and Markovian dynam-
ics. We constructed these histories using the generalization
< e(Tr{(e*'/‘“2*‘1)[P2]P1}3t Py)+Tr(e™Atz~t (3.19 of the quz_;\s_iprojectors used_ by Ohsné’he e_stimation
1 (4.1) for the validity of the Gaussian approximation has en-
X[P,]P1p; ,p_l)}_ (6.6  abled us to establish, how those quasiprojectors evolve.
! We showed that as long as the phase-space cell is large
From the analysis in the previous section, we know thaf"”d regular, histpries corres_pgn_ding to the evqution'accord—
within an error of ordef. #(t,—t,)/LZJV2TrP, ing to the clas_s;lcal deterministic equations of motion ap-
proximately satisfy the sum rules. The order of magnitude of
e A [p,]=P,. (6.7 the corresponding error depends only on the Wigner function
area. 7 (a function only of the time difference between pro-
This means that the left hand side(#.6) is of order jections. . Z(t) can be computed as the solution of the sys-
] tem(5.7)—(5.11) under the initial conditior§5.12. It starts as
[ A(t,—ty)ILA]2TrP, containing purely quantum uncertainties &0 and at a time

scale ofy ! becomes of the order of magnitude of its asymp-
totic value, which corresponds to thermal fluctuations.
€Tr(P,p, )< eTrPy. Ther_e are three tir_’ne scales in. our model, which d.etermine
1 qualitative changes in the description of the dynamics: the
Markovian time ty,=#/KT, the decoherence time
ty=(#%/ykT)Y2 and the relaxation tim¢,=y L. For times
e=[ At,—t)ILAH2 t<ty, dynamics are not Markovian and therefore we cannot
talk about predictability. For times such thatty,,<t<t,,
.7 takes values betwedil2 and its asymptotic value which sufficiently large phase-space cells evolve almost under de-
is of the order of the thermal fluctuations in phase spaceterministic equations of motion and the details of the poten-

and the right hand side of order

Thus the probability sum rules are satisfied within an order
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tial are not of importance in the increase of the fluctuations.

At t=t4 the thermal fluctuations overcome the quantum ones P(C)= L dpzd%fr dp;da;J(p2,dz,talP1,01,ta)

[12]. Fort>t4 the degree of decoherence and predictability 2 !

gradually worsens and is destroyed for cells with an area less Xf(p1,91,t1), (7.9

than the thermal uncertainty. For these cells any sense of

predictability has been lost at=t,. In the contrary suffi- Wheref(p,q,t) is a classical probability distribution satisfy-
ciently macroscopic cells, continue to evolve within a goodind the Fokker-Planck equation andl is the associated
approximation according to the classical equations of motioPropagator. We can verify that this result is equivalent to
even at times larger thap . Eventually at long times, ap- ©Urs in the partlt_:ular case of an harmonic potential, Whe_re
proximately deterministic evolution will break down, be- the propagator is Gaussian centered around the classical

cause the dissipative nature of the evolution tends to shrin ath. tl;: thsvyolum? of t’ghe phaz/e;—?pace ce_IIs; '(Sj mﬂﬁhtfrger
the phase-space cells, until their area is of the order of mai; an the Wigner function area/(t) associated wi €

nitude of the thermal fluctuations. We therefore see that th ropaggtor[/lzqr,r tDZe n the pro.pagatlon IS within an error of
breakdown of predictability is dependent mainly on the pa-Order E_(‘%/Lfﬁ 2o func_:'qon_ around the classical path
) .a[nd the conditional probability is found

rameters of the environment and the structure of the potentia

is largely irrelevant, unlike the unitary case. This comes p(Cy,t;—T5,t,)=1—0(e).

probably from the fact that we have considered an one di-

mensional problem. It is to be expected that in a system with

more degrees of freedom, time parameters of the potential

(i.e., the Lyapunov exponents of the classical solujiavi# | would like to thank S. Schreckenberg for a useful sug-

play a more important role in the determination of whengestion and in particular J. J. Halliwell for suggesting this

classical predictability breaks down. project and for many discussions and encouragement during
Perhaps contrary to our expectations, the coupling to théhe research. This research was supported by the Greek State

environment tends to make the decoherence properties &icholarship Foundation.

histories worse. This means that histories corresponding to

the evolution of phase-space cells are not the ones that give APPENDIX: PROOF OF THE THEOREM

the sharpest correspondence with a deterministic classical

description. This is to be expected, since the classical de\ée

scription _of guantum Brownian motion is that of a stochastiCHagedom for the case of closed system, where the reader can
Process in phase space. ) refer for further details.

Essentially, there are two mechanisms that produce deco- T evolution equation for the density matrices in the
herence. One is the interaction with an environment and thg4kowian regime(2.11) corresponds to the action of an

other is the existence of phase-space projection operators thgke-parameter semigroup with generater on the state
have an intrinsic almost deterministic time evolution. In thegpace. We can write

case of purely Hamiltonian dynamics only the latter appears.
In our case, we have both, but it is clear that again the latter L=+,
is the dominant one. This is attributed to the simplicity of the
corresponding classical equations, in which the effect of thavhere.””and?/ are generators of one-parameter semigroups
environment is contained only within the term2yp. It is  given by
therefore natural that observables close to the ones used in 1 5
purely Hamiltonian systems will decohere giving rise to ap- _, -_ 2 Y
proximate predictability. 7Lel= if [p/2M,p]+ i [xdp.pH= #? [x[x.p1l,

With those results we have achieved three things: First, (A1)
we have generalized the results of Omma classical deter-
minism for a class of open systems. In fact, our results are ) 1
valid for any Markovian equation of the Lindblad typ&s], “pl= i [V(x),p]. (A2)
with environment operatork,, linear in position and mo-
mentum. Second, we have verified the validity of classical First we establish how the class of states described by the
equations of motion with linear dissipation, as a consequencgaussian density matricé3.11) evolve under” and#2. For
of the underlying quantum mechanical evolution and suffi-short timest (t<7<vy~1) we have
cient coarse graining. Third, taking quantum Brownian mo-
tion as a toy model, we have obtained a picture of the be- ||e”'[p(2q,Fg.r9,00.P0)1— p(2,F.1,q,p)|lus<K(t/7)?,
havior of collective variables in many body systems and the (A3)
guasiclassical behavior of these variables.

Finally, we would like to compare our results with the Where
ones obtained if17] using the quantum state diffusion pic-
ture for the quantum Brownian motion. For the case of the q=0qo+ @t (A%)
two-time phase-space histori€s=(I";,I';) and under the as- N Vi
sumption that they decohere, the authors gave for the asso-
ciated probability the expression: P=pPo— 2yPot, (A5)
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We are going to give the proof for the theorem stated in
c. IV. It follows the reasoning of the similar proof of
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2
3=30+ Mzgr())t, (AB)
1 2D
F:Fo+ M20F0r0_4’)’|:0+7 t, (A?)
1 , 2Y
r=ro— mEOrO—VFO—Zer t. (A8)

For the most general quadratic potential
V(x)=a(x—a)+3(x—q)? (A9)
we can easily verify

eV/t[p(EO'FO,rO,qO,pO)JZp(EO,FO,ro"‘ bt,dg,po—at).
(A10)

4721

Following the treatment of Hagedorn we can split the in-
tegral into two sectors: D={x;|x—q|<#“} andD=.2-D
where a<<1/2.

The first part(integration oveD) is found to be smaller
than

2t?
? BZ(TrPZ) l/2h6a

(A15)
while the second part is bounded by
2t2 2\1/2 2a 2a—1
77 (2 Trp9)"* exd MA““—1 1. (Al6)
Assume that
SEO\Y
ST < N7 2P (A17)

For the case of a general potential satisfying the conditions

we stated in Sec. IV, we define

Wq(x)=V(q)+V'(a)+ VP (a)(x—a)®.  (AL1)

Denoted by7/y, and%wq the generators corresponding to

V(x) andW,(x), respectively. We have:
t2
le”VTp]—e" W TpllEs= 72 (o, (%A= 7w ) PD)
(A12)

in the Hilbert-Schmidt inner product.
=|Uy— Uwq| we see that the right hand side reads

2 , 2t2 -
72 (7Lpl,CLpl)= 32 Tr(p“0°=p0p0), (AL3)

whereQ is the operatofV(x) —Wq(x)| acting on the Hilbert

Writing: @

for someN>0 andp=<a. This implies the existence @>0
such that

3F
3 +4F

M- A<M —AZPTYN?

for A<<§ and takinga<(1/2)—p there exists constawt, such
that

exd MA2e—f 2Pt 2= IN2 < ¢, 75,
Thus we establish that when SE/[S+4F]) 1!
<N# 2P, qeK, for eachN>0, p<1/2, a<(1/2)—p andt>0
there exist<L>0 and 6>0, such that fori<<d
le[p]—e Wi [plllus<CA%*~*(Trp?) V2. (A18)

We now have expressions for the evolution induced by

spaceH,. In the coordinate representation this quantitythe generators” and #Z. Taking a discretization of the time

reads

2t2
77 f dx dyp(x,y)p(y,x)O(x)[O(x) —O(y)]

2t2 3 oh \12
g__
he 2wh \2/4+F
de 1 3F 2| 02
XX = 7S E X707,

(A14)

interval and assuming uniform convergence for the solutions
of the differential equations we can combine them using the
Trotter product formula

e%t: lim (e/t/Ne//t/N)N, (Alg)
N— o
to get our desired result
le”[p(20,Fo.0.G0,Po)]
—p((1),F(1),r(1),q(t),p()[lus<Ch*.  (A20)
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