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We consider the decoherence of phase-space histories in quantum Brownian motion models, consisting of a
particle moving under a potentialV(x) in contact with a heat bath of temperatureT and dissipation constantg
in the Markovian regime. The phase-space histories are described by quasiprojectors consisting of Gaussian
density matrices smeared over large phase-space cells and are characterized by the size@G# of the phase-space
cell together with the size [M ] of the margin~the region at the boundary ofG in which the Weyl symbol of the
projector goes from 1 to 0!. We generalize earlier results of Hagedorn to show that an initial Gaussian density
matrix remains approximately Gaussian under nonunitary time evolution deriving a bound giving the validity
of this approximation. Following the earlier work of Omne`s @J. Stat. Phys.51, 351 ~1989!# we use this result
to compute the time evolution of the phase-space projectors under the master equation and show that histories
of phase-space samplings approximately decohere, and that the probabilities for these histories are peaked
about classical dissipative evolution, but with an element of unpredictability which is reflected in the increase
of the size of the margin.@S1063-651X~96!07905-6#

PACS number~s!: 05.401j, 03.65.Sq

I. INTRODUCTION

Ever since the first days of quantum mechanics, the ques-
tion of the emergence of the classical deterministic world
from the underlying probabilistic laws is considered of par-
ticular importance. It is closely connected to the measure-
ment problem, since any measurement involves the interac-
tion of the system under observation with a large
deterministic device.

Different aspects of this problem have been addressed ex-
tensively in the literature. Still, there are issues that remain
unclear. Among them are questions on the validity of the
description of many-body systems with collective variables
that evolve under quasiclassical equations of motion, the
conditions under which classical predictability arises in a
quantum system, its possible breakdown at long times and
how it is affected by environmentally induced noise. In this
paper we will address these problems, as appearing in a wide
class of open quantum systems, namely, quantum Brownian
motion models.

Our analysis lies within the framework of the decoherent
histories approach to quantum mechanics, as set out by Grif-
fiths @1#, Omnès @2–4#, and Gell-Mann and Hartle@5#. The
main element of this formalism is the notion of history. A
history is a string of projection operators at consecutive mo-
ments of time. We can build sets of histories, by taking a
partition of the unit operators into projectorsPa(t) at each
moment of time. These operators satisfy

PaPb5dabPa , ~1.1!

(
a

Pa51. ~1.2!

We usually consider them to evolve in the Heisenberg pic-
ture

Pa~ t !5eiHtPae
2 iHt . ~1.3!

An element of a set of such histories reads

Ca5Pan
n ~ tn!...Pa2

2 ~ t2!Pa1
1 ~ t1!. ~1.4!

A space of histories has a natural candidate probability
measure

p~Ca!5Tr~Car0Ca!. ~1.5!

This measure can be interpreted as a probability only if the
standard probability sum rules are satisfied. The set of histo-
ries is then called consistent~or decoherent!. The condition
for this can be written in terms of the decoherence func-
tional, a complex valued function of pairs of histories:

D~a,a8!5Tr~Car0Ca8!. ~1.6!

The necessary and sufficient condition for the sum rules to
be satisfied is then

ReD~a,a8!50, aÞa8. ~1.7!

We usually employ the stricter condition

D~a,a8!50, aÞa8. ~1.8!

The terms consistency and decoherence of the set of histories
are given in the literature to the conditions~1.7! and ~1.8!,
respectively. That assignment of a probability measure to a
set of histories, allows us to reason with the histories using
the rules of classical logic.

In general, decoherence appears in physical systems, only
for coarse grained histories. A typical example of coarse
graining is to ignore a number of degrees of freedom of the
system, or take projectors into large intervals of position or*Electronic address: can@tp.ph.ic.ac.uk
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momentum. The decoherence is in almost all physical situa-
tions only approximate, that is, the probability sum rules are
satisfied only within an order ofe, wheree is a small positive
number.

In quantum mechanics the most general proposition for a
physical system at a given instant of time is represented by a
projection operator. In classical mechanics the corresponding
entity is the phase-space cell. Thus when we want to discuss
classical deterministic behavior, we have to construct entities
that bridge the gap between the two formalisms.

This is done through the introduction of quasiprojectors,
that is, approximate projectors onto phase-space cells. They
are constructed in such a way, that their corresponding sym-
bol in the Wigner representation is a smoothened character-
istic function onto some phase-space cell. Omne`s @3# has
shown that histories corresponding to classical Hamiltonian
evolution of sufficiently large and regular phase-space cells,
approximately satisfy the consistency conditions. Also the
conditional probability for our system to be found in the cell
G2 at timet2, if at time t1 it was within the cellG1, is almost
unity, providedG2 is obtained fromG1 through evolution
according to the classical equations of motion.

In this paper, we are interested in generalizing these re-
sults for a class of open systems, namely, quantum Brownian
motion models. These consist of a particle moving under a
potentialV(x) and coupled to a large system which is taken
as the environment. Usually we take as an environment a
collection of harmonic oscillators in a thermal state. By trac-
ing out the environment degrees of freedom, we obtain an
effective evolution equation for the density matrix of the
particle. The coupling of the environment to the particle is
contained within two effects: dissipation and diffusion.

We concentrate on a particular case of those models,
namely, when the evolution equations are Markovian. This
corresponds to the case of the ohmic environment at high
temperature. This is mainly due to the fact that only in the
Markovian limit can we write the decoherence functional in
terms of the reduced density matrix.

These models can be used as prototypes for more compli-
cated systems, as, for instance, particle detectors in the early
universe or continuous measurement. What is more interest-
ing for our approach, is that we can model this way the
effective behavior of collective or hydrodynamic variables.
We can identify the degrees of freedom of the particle with
distinguished variables in a many-body system, like, for in-
stance, the center of mass position and momentum of a mac-
roscopic body, while the environment represents all the ig-
nored degrees of freedom like the positions and momenta of
its constituents.

The issue we are concentrating on, is the conditions under
which the description of the system with the classical dissi-
pative equations of motion can be accurate. Essentially we
want to prove approximate determinism for quantum dissi-
pative systems. Our approach is rather different from other
authors that have discussed decoherence of phase-space his-
tories @6,7# or configuration space histories@8# and closer to
the spirit of Omne`s @3,4#.

Our main results can be summarized, as follows: We
establish the degree of the validity of the Gaussian approxi-
mation for the Markovian regime of quantum Brownian mo-
tion models. We show that a Gaussian density matrix re-

mains approximately Gaussian centered around the classical
path for a large class of potentialsV(x). The validity of the
approximation is quite good as long as the spread in position
is much smaller than the scale on which the nonlinearities in
the potential become significant.

We use this result to show, that quasiprojectors onto suf-
ficiently large and smooth phase-space cells evolve accord-
ing to the classical equations of motion. The environment
induces a degradation on the evolved projectors, which leads
essentially to a loss of predictability.

Finally, we construct the decoherence functional in the
Markovian regime and establish that histories corresponding
to classical evolution on phase space approximately satisfy
the consistency condition, and thus approximate determinism
arises.

This paper is structured as follows: After giving a brief
review of quantum Brownian motion models, we proceed to
discuss phase-space projectors in Sec. III. We generalize the
construction of quasiprojectors from coherent states of
Omnès, using Gaussian density matrices. In Sec. IV we state
a theorem on the degree of validity of the Gaussian approxi-
mation in our models, using which we establish how the
quasiprojectors we constructed evolve in Sec. V. We con-
struct histories corresponding to classical evolution in Sec.
VI and discuss their decoherence properties. In the last sec-
tion we summarize and discuss our results.

The notation we will use is as follows: Whenever there
is a possibility of confusion the reduced density matrix will
be denoted asr̃, otherwise plainly asr. The Hilbert space of
the wave functions will be denoted asHc and the one of the
density matrices under the Hilbert-Schmidt inner product as
Hr . We write the inner product inHc using the Dirac nota-
tion ^c1uc2& and inHr as ~r1,r2!. The action of an operator
L on an element ofHr will be denoted asL@r#. The volume
of a phase-space cellG is written @G#. In Sec. IV and in the
Appendix we will use units such that\ is dimensionless.

II. QUANTUM BROWNIAN MOTION MODELS

We first give the basic features of the model, within
which we are going to discuss the phase-space decoherence.
We consider a particle of massM moving under the influ-
ence of a potentialV(x) and in contact with a heat bath of
harmonic oscillators. Assuming a linear dependence of the
spectral density of the bath onv ~ohmic environment! the
reduced density matrix for the particle evolves under the
master equation@9–11#:

]r

]t
52

\

2Mi S ]2r

]x2
2

]2r

]y2D2g~x2y!S ]r

]x
2

]r

]yD
1

1

i\
@V~x!2V~y!#r2

D

\2 ~x2y!2r, ~2.1!

where we setD52MgkT.
In deriving this equation we have assumed a high-

frequency cutoffL in the spectral density of the environ-
ment, which is essentially the inverse of the response time of
the thermal reservoir. The master equation is actually valid
in the Fokker-Planck limitkT@\L and for timest@L21,
which is the Markovian regime.
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In operator form the master equation reads

]r

]t
5

1

i\ F p22M
1V~x!,rG2

g

i\
@x,$r,p%#2

D

\2 †x,@x,r#‡

[L@r#. ~2.2!

Since this master equation describes a Markovian process,
the time evolution of the initial density matrix can be repre-
sented by the action of a one-parameter semigroup with gen-
eratorL on the state space. We will represent an element of
the semigroup aseLt and the time evolution of an initial
density matrixr0 ase

Lt@r0#.

III. PHASE-SPACE PROJECTORS

A. General considerations

In order to discuss the phase-space histories, we have to
find elements of the quantum mechanical formalism that cor-
respond closely to the notion of a phase-space cell, at least in
the macroscopic domain. Since any proposition about a
physical system at a given instant of time can be represented
as a projection operator, what we need is a class of operators
that project onto the subspace of physical states which have
position and momentum well within some phase-space cell
G.

Position and momentum cannot be simultaneously speci-
fied with arbitrary accuracy, so we must consider approxi-
mate projection operators. We call an operatorP a qua-
siprojector into a phase-space cellG if any wave function
well localized insideG ~outsideG! is an approximate eigen-
function ofP with eigenvalue 1~0!. The construction of such
operators is particularly easy in the Weyl representation, in
which we associate withP a function f (x,j) on a mock
phase space, which we call its associated symbol

f ~x,j!5E dy exp~2 i jy/\!K x1
y

2
uPux2

y

2 L . ~3.1!

In general, a functionf (x,j) on a two dimensional phase-
space is called a symbol of orderm, wherem is real, if its
derivatives of all orders have the following bounds:

u]x
a]j

b f ~x,j!u<Cab~11x21j2!~m2a2b!/2, ~3.2!

whereCab are constants called the seminorms off . Note
also, thatx andj are in dimensionless units~scaled by some
typical dimensionsL andP !.

One possibility is to take for the symbol corresponding to
a quasiprojector on a phase-space cellG the characteristic
function of the cellG. This does not define a good operator
because of the discontinuity at the boundary so instead, we
consider a smoothened characteristic function@4#. That is,
we takef to be equal to 1 inside and to 0 outsideG, except
in a small region along the boundary ofG, where it interpo-
lates smoothly from 1 to 0. This transition region is called
the marginM of the cellG. In order for the operator to be
well defined, the phase-space cell has to be regular; loosely
speaking it should not develop structure on the scale of\ and
the volume of the marginM should be much smaller than the
volume ofG. The parametere5[M ]/@G# is a measure of the
validity of the approximation. For a sufficiently regular cell

it is of the order of~\/LP !1/2, whereL, P are typical length
and momentum scales for our cell. We will return to the
issue of regularity in more detail later.

The quasiprojectorsP have a number of interesting prop-
erties@3#:

~1! Their trace is proportional to the volume of the phase-
space cell.

TrP5@G#/~2p\!. ~3.3!

~2! They are very close to true projectors:

TruP2P2u,ce, ~3.4!

wherec is a number of the order of unity.
~3! For two different projectors on the same phase-space

cell P and P8 with corresponding parameterse and e8 we
have:

TruP2P8u,c~e1e8!. ~3.5!

~4! If G1, G2, andG1ùG2 are three phase-space cells and
P1 ,P2 ,P12 quasiprojectors associated to them, the operator
dP5P1P22P12 is bounded in trace norm by:

TrudPu,K
@G#

2p\
~\/LP !a, ~3.6!

where@G#5sup~@G1#,@G2#!, a.1/2 andK of order unity.

B. Coherent state quasiprojectors

One particular way to construct quasiprojectors is through
the use of coherent states@3#. Consider the Gaussian wave
function:

gqp~x!5S S

2p\ D 1/4expF2
S

4\
~11 ir !~x2q!21 ipx/\ G .

~3.7!

This induces a metric

d~x,p!5
S

4\
x21

\

S~11r 2!
p2 ~3.8!

on phase space with respect to which one can give a precise
definition of a regular phase-space cell@3,4#.

We call a phase-space cell regular to ordere, with respect
to one particular family of coherent states if:

~1! The curvature radii with respect to the metricd of ]G
are larger thanl in absolute value.

~2! The margin of the cellM which is defined as

M5 ù
~x,p!e]G

e~x,p,l !,

wheree(x,p,l ) is the ellipsis defined by

e~x,p,l !5$~x8,p8!ud~x2x8,p2p8!, l 2%

satisfies [M ],e@G#.
~3! The numberse and 1 satisfy:e22l2,e.
If G is a regular cell to ordere then the operator:
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P5E
G

dqdp

2p\
ugqp&^gqpu ~3.9!

is a quasiprojector associated withG. We can readily see that
its symbol

f ~x,j!5E
G

dqdp

p\
expF2

S

2\
~11r 2!~x2q!2

2
2

\S
~j2p!22

2Sr

\
~x2q!~j2p!G

~3.10!

is up to corrections of ordere2 l2 equal to 1~0! inside ~re-
spectively, outside! G except for the marginM where it in-
terpolates between those two values. It also satisfies the con-
ditions for being a symbol of arbitrary negative order.

C. Generalized Gaussian projectors

We are mainly interested in the time evolution of the qua-
siprojectors, when our system is under the influence of the
thermal environment, as in the case of quantum Brownian
motion models. Due to the nonunitarity of the evolution, the
operator in timet will take a form that cannot be related to
the quasiprojectors~3.9! in a straightforward way, as in@3#.
Omnès has shown that under a large class of potentials, the
density operators of the formugqp&^gqpu evolve approxi-
mately into operators of the same form but belonging to a
different family of coherent states~different parametersS
andr !. The nonunitarity of the evolution in our case implies
that an operator of this form become mixed. Therefore we
need a larger class of Gaussian density operators.

We propose a class of quasiprojectors, that are defined
through Gaussian density matrices, which we choose to pa-
rametrize by the set of five numbers (S,F,r ,q,p) as

^xuruy&5S S

2p\ D 1/2expF2
S

2\ S x1y

2
2qD 22 F

2\
~x2y!2

2
irS

2\ S x1y

2
2qD ~x2y!1 i

p

\
~x2y!G , ~3.11!

which is defined forS<4F in order to satisfy the positivity
requirement. For these density matrices we can verify that,

iriH.S5~Trr2!5~S/4F !1/25~\/2A!<1, ~3.12!

whereA is the Wigner function area defined as:

A25~Dq!2~Dp!22Cpq
2 ,

with

Cpq5
1

2
Š~q2^q&!~p2^p&!1~p2^p&!~q2^q&!‹.

A is a measure of the phase-space area in which the Gauss-
ian density matrix is localized.

This density matrix defines a metric on phase space in an
analogy to~3.8!

d~x,p!5
S

4\
x21

\

4FS 11
S

4F
r 2D p2. ~3.13!

With respect to this metric, we can define the notion of
the margin of a phase-space cell and the notion of regularity
~up to ordere! as before. We define the operator

P5E
G

dqdp

2p\
r~S,F,r ,q,p!. ~3.14!

This is a quasiprojector associated with the cellG.
To see this, consider its symbol,

f ~x,j!5~S/4F !1/2E
G

dqdp

p\
expF2

S

2\ S 11
S

4F
r 2D

3~x2q!22
1

2\F
~j2p!2

2
Sr

2\F
~x2q!~j2p!G . ~3.15!

It is a symbol of arbitrary negative order and has the form of
the most general Gaussian smeared characteristic function
associated to the cellG. We can verify that it takes value 1
~0! inside ~outside! G up to corrections of ordere2 l2, where
l is defined as before but with respect to the metric~3.13!. It
interpolates between those two values only in the margin,
which has a width of orderA1/2.

How can we compare this class of projectors to the ones
defined through the general Gaussian states~3.11!? A coher-
ent state is localized within a volume of order\/2 and is
unable to distinguish points found within a volume of this
size. For this reason we expect the margin associated with a
projector onto a phase-space cell to have an area of order\
and the parametere to be of order~\/LP !1/2. This estimation
is backed by a detailed calculation using microlocal analysis,
that is, we can verify that this order of magnitude for the
parametere is the one that gives the best approximation of a
quasiprojector to an exact projector@3,4#.

On the other hand the Gaussian density matrix~3.11! is
localized within a volume of orderA. Therefore we expect
the width of the margin to be of orderA and the parameter
e to be of order~A/LP !1/2 for the class of projectors~3.14!.
This is clearly, not the ‘‘best’’ quasiprojector one can asso-
ciate to a phase-space cell, but this generalization is neces-
sary. As long as the quantity~2A/\!1/2 is of the order of
unity we still have a good approximation for a phase-space
projector. The larger the value ofA is, the worse the degree
of approximation to a true projector is. We are therefore
going to refer to projectors with minimum value ofA5\/2
~the ones constructed from pure Gaussians! as the maximum
resolution projectors.

We will see that the time evolution of an initial general-
ized coherent state remains within a good approximation a
Gaussian density matrix, with time increasing the value of
A. We know from the study of linear systems that the value
of A increases polynomially in the short time limit, to be-
come constant for times much larger than the relaxation time
g21 @12#. Its asymptotic value corresponds to the uncertainty
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due to thermal fluctuations, and is typically many orders of
magnitude larger than the quantum ones. Still, for suffi-
ciently large phase-space cellsA is much smaller than the
size of the cell, the quantitye remains quite small and our
operators~3.14! are still close to true projectors. On the other
hand, for smaller cells for which\!LP,A` there comes
some time~usually of the order ofg21!, when the evolved
quasiprojectors cannot any longer distinguish the phase-
space cell, since the size of the margin has become essen-
tially as large as the whole of the cell.

IV. TIME EVOLUTION
OF GAUSSIAN DENSITY MATRICES

We are interested in the evolution of the Gaussian density
matrices~3.11! in the class of quantum Brownian motion
models described by the master equation~2.11!. As we men-
tioned, this expression is valid in the Markovian regime
~high temperature and ohmic environment!.

For linear potentials, we know~see for instance@9,12#!
that the propagation is Gaussian, and an initial Gaussian den-
sity matrix remains Gaussian centered around the classical
path. Also in the case of zero coupling to the environment
~unitary evolution! Hagedorn@13# has established that a gen-
eralized coherent state retains its shape for a period of time
and its center follows the classical equations of motion. The
error of this approximation is of the order of~\/LP !l, where
l,1/2.

We seek a generalization of these results. We want to
show, that for a large class of potentialsV(x) the master
equation~2.11! respects the Gaussian nature of the density
matrices ~3.11! and that their centers follow the classical
equations of motion~with dissipation!. We shall show that
this is a good approximation as long as the spread in position
is sufficiently small and that the error is of the order of
~\/LP !l as in the purely Hamiltonian case.

A. The theorem

In this section, we present our result in the form of a
theorem, a detailed proof of which can be found in the Ap-
pendix. We assume that the potentialV(x) satisfies:

~1! V(2)(x) is continuous and uniformly Lipschitz on
compact subsets ofR ~i.e., given anyR.0 there existsk
such thatuV(2)(x)2V(2)(y)u,bux2yu wheneveruxu,R, uyu
,R!.

~2! uV(x)u,eMx2.
~3! V(x) is bounded from below.
Assume that at t50 the system is in the state

r05r(S0 ,F0 ,r 0 ,q0 ,p0). The exact solution to the master
equation~2.11! can be written formally as

r t5eLt@r0#,

whereL is the generator of the one-parameter semigroup
acting on the state space, which is determined by the dynam-
ics.

Then we have the following theorem:
Theorem: For eachT.0, N.0, p,1/2,a,~1/2!2p and

0,t,T, such that

S SF

S14F D 21

,N\22p

there existsC.0, d.0 for which

ieLt@r0#2r„S~ t !,F~ t !,r ~ t !,q~ t !,p~ t !…iHS,C\l ~4.1!

whenever\,d. We denotel53a21.
The quantities„S(t),F(t),r (t),q(t),p(t)… are solutions to

the system of differential equations:

q̇5
p

M
, ~4.2!

ṗ52V8~q!22gp, ~4.3!

Ṡ5
1

M
S2r , ~4.4!

Ḟ5
1

M
SFr24gF1

2D

\
, ~4.5!

ṙ52
Sr 2

2M
2

2

M
F22gr1

2

S
V~2!~q!, ~4.6!

under the initial conditions:

„S~0!,F~0!,r ~0!,q~0!,p~0!…5~S0 ,F0 ,r 0 ,q0 ,p0!. ~4.7!

Note that we have used dimensionless units withL51 and
P51.

The proof is based on the observation that the generator
L can be split into two parts, described in the
Appendix: L5S 1U, whereS is the generator that cor-
responds to the Brownian motion of a free particle andU a
generator that contains only the effects of the potential. The
action ofS can be exactly determined~for instance, using
the density matrix propagator which can be exactly com-
puted for the free particle!, while the action ofU can be
approximated with a quadratic expression. Thus we get ex-
pressions foreS t@r0# ande

Ut@r0# which can be combined to
give an expression foreLt@r0# through the use of the Trotter
product formula. The proof closely follows the one of Hage-
dorn @13#, with the main differences being the nonunitarity
of the generatorS and that our Hilbert space is the one of
the density matrices under the Hilbert-Schmidt norm.

The proof involves taking a Taylor expansion of the po-
tential and keeping only the quadratic terms. Therefore our
results are exact for the harmonic oscillator and the free par-
ticle case.

B. Uncertainties

We can write the uncertainties in positionDq and in mo-
mentumDp as well as the correlationCpq associated with
the Gaussian density matrix in terms of the parametersS, r ,
andF:

~Dq!25\/S, ~4.8!

~Dp!25\FS 11
S

4F
r 2D , ~4.9!
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Cpq52
\r

2
. ~4.10!

From this we can see the interpretation of the parametersS,
F, andr we used to parametrize the Gaussian density matri-
ces. ClearlyS21 is a measure of the spread in position andr
of the correlation between position and momentum.S/F is
proportional to Trr2 and therefore is a measure of the non-
purity of the state. The original parametersS, F, r have been
more convenient in the course of the proof, but in order to
have a clearer interpretation of the results, we shift our at-
tention to the set of variablesDq,Dp,Cpq . Within our ap-
proximation they evolve according to the equations:

d

dt
~Dq!25

2

M
Cpq , ~4.11!

d

dt
~Dp!2524g~Dp!222CpqV

~2!~q!12D, ~4.12!

d

dt
Cpq5

1

M
~Dp!222gCpq2~Dq!2V~2!~q!. ~4.13!

We notice, that the diffusion coefficient appears only in
the equation for the momentum uncertainty, and at short
times is the dominant term. This means that the spread in
momentum is more effective than the corresponding spread
in position, which depends on the diffusion coefficient only
indirectly. It is also important to stress the reluctance of par-
ticles with large mass to undergo a rapid growth of the fluc-
tuations.

C. Validity of the approximation

The essential requirement for the validity of our approxi-
mation is that the quantity~S14F)/SF remains sufficiently
large through the evolution according to Eqs.~4.2!–~4.6!.
Since we have thatS<4F, this is equivalent to saying thatS
remains sufficiently large~much larger thanN\2p!. But a
large value ofS means that the particle is well localized in
position. We can thus say, that while the state remains well
localized in position ~that meansDq,N21/2\1/22p!, the
Gaussian approximation will be quite good. When, mainly
due to the diffusion, the state of the particle has become
spread in space, the large scale structure of the potential
becomes important and even weak nonlinearities will con-
tribute significantly in the evolution, thus rendering the
Gaussian approximation invalid. Note, that the constantsl
andp satisfy:

l, 1
223p,

which shows that the larger our tolerance for the spread in
position, the larger the error stemming from our approxima-
tion. In general, we cannot say much about the time when the
Gaussian approximation breaks down, since this depends
crucially on the form of the potential, the particle mass and
the position and spread of the initial Gaussian.

Excluding cases of potentials varying significantly in the
microscopic scale or potentials where tunneling effects can
be important, we expect the Gaussian approximation to hold

within a very good accuracy for times much smaller than the
typical time scale in our dynamics:g21. For larger times, the
validity of the approximation, depends heavily on the length
scaleL on whichV(2)(x) varies. If this length scale is much
larger than the size of the thermal fluctuations the approxi-
mation will hold for time scales some orders of magnitude
larger thang21. If this is not the case, the approximation will
have broken down much earlier. Within a few timesg21 the
particle will tend towards the state of thermal equilibrium.
We can clarify those ideas by examining the simplest case of
a system moving in a potential exhibiting only weak nonlin-
earities

V~x!5 1
2Mv2x21hx4. ~4.14!

This effect of the nonlinearities becomes significant at
length scales of the order of

L5SMv2

h D 1/2.
Assuming weak coupling to the environment, the uncertainty
in position is given in leading order toe andg/v @12#

~Dq!25~Dq8!2e22gt1
MkT

v2 ~12e22gt!, ~4.15!

with ~Dq8!2 containing the effects of the unitary evolution.
The Gaussian approximation will break down whenDq.L.
We can readily verify that forh!v4/kT, Dq will remain
much smaller thanL, while for larger values ofh the ap-
proximation will break down at a time scale of the order of
g21.

We should note, that for a large variety of physical sys-
tems, it is not necessary to assume weak nonlinearities, in
order to have a large value ofL. Systems with potentials
corresponding to a spatial average of many microscopic de-
grees of freedom have typical values forL that can be said to
correspond to a macroscopic scale.

A relevant question is to give an estimation of the error
termC\l of our approximation. For the case of the closed
system, a very rough estimation is

\lE
0

t

dt uV~3!
„q~ t !…uDq̇~ t !

in dimensionless units@3#. When considering the open sys-
tem case we can see from the detailed study of the proof, that
a term of Trr2,1 enters the right hand side of the inequali-
ties, thus rendering our approximation better. Also for the
U-shaped potential the effect of the dissipation is to make
the values of the third derivatives of the potential smaller in
absolute value. For the time, that the increase in the uncer-
tainty due to the diffusion is small, we expect our approxi-
mation to be better when taking into account the coupling to
the environment. On the other hand, at times larger than the
typical time where thermal fluctuations overcome the quan-
tum ones, the more effective spread of the density matrix
makes the effect of nonlinearities more important, and thus
reduces the accuracy of the Gaussian approximation. There-
fore we arrive at the following picture:
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At times less than~\/gkT!1/2 the Gaussian approximation
is better when the environment is taken into account.

At larger times because of the effects of diffusion, the
approximation becomes gradually worse, since diffusion be-
gins to strongly affect the uncertainty in the position.

Finally we should make a remark on a problem that may
arise when having a closer look at the proof of the theorem.
We know that the master equation~2.11! does not preserve
positivity at very short time scales@12,14#. This is a result of
taking the cutoffL to infinity. Our proof, being based on a
discretization of the time and taking the continuous limit in
the end, might be inadequate for a class of initial states. We
can avoid this problem, by adding a termh†p,[p,r] ‡ in the
master equation~like the one appearing in@15#!. The master
equation thus becomes positive and this term does not
change the nature of the proof. In the end we can seth equal
to zero, an approximation that is valid in the high tempera-
ture regime.

V. EVOLUTION OF QUASIPROJECTORS

In this section we study the time evolution of the qua-
siprojectorsP introduced in Sec. III. We shall show that as
long as the corresponding phase-space cells remain large and
regular, they evolve according to the classical equations of
motion with dissipation. One expects that the coupling to an
environment will induce a degradation in the quasiprojectors
as they evolve. This is reflected in an increase of the size of
the margin, which implies a loss of predictability.

We work in the equivalent of the Heisenberg picture for
open systems. That is, we assume that the density matrix is
time independent and that the effect of the evolution is con-
tained in the operators. Let us further assume that in this
picture a~bounded! operatorP evolves under the action of
an one-parameter semigroup with generatorM. The simple
correspondence betweenM andL that exists in unitary
evolution is lost here.

We determineM by demanding that the probabilities are
the same in both pictures. This means

Tr~eMt@P#r!5Tr~PeLt@r#!, ~5.1!

which is equivalent to demanding

Tr~M@P#r!5Tr~PL@r#!. ~5.2!

Having the expression~2.11! for L it is easy to show that:

]P

]t
5M@P#52

1

i\ F p22M
1V~x!,PG2

g

i\
$p,@P,x#%

2
D

\2 †x,@x,P#‡. ~5.3!

The relation of this equation to the one forr is more
clarifying in the position representation:

]

]t
P~x,y!5

\

2Mi S ]2

]x2
2

]2

]y2DP~x,y!

1g~x2y!S ]

]x
2

]

]yDP~x,y!

2
1

i\
@V~x!2V~y!#P~x,y!

22gP~x,y!2
D

\2 ~x2y!2P~x,y!. ~5.4!

Comparing this equation to the one forr, we notice the
change of sign in the terms corresponding to the dynamical
evolution and the appearance of the extra term22gP. Be-
cause of this term the equation fails to preserve the trace.
This is an expected feature, when studying the evolution of
quasiprojectors, since classical dissipative evolution does not
preserve the phase-space area.

We can study now the evolution of Gaussian operators
W(S,F,r ,q,p):

^xuWuy&5S S

2p\ D 1/2expF2
S

2\ S x1y

2
2qD 22 F

2\
~x2y!2

2
irS

2\ S x1y

2
2qD ~x2y!1

ip

\
~x2y!G . ~5.5!

It is straightforward to show, using the treatment found in the
appendix, that within an error ofC~\/LP !l in the Hilbert-
Schmidt norm,

eMt@W~S0 ,F0 ,r 0 ,q0 ,p0!#

5J~ t !W„S~ t !,F~ t !,r ~ t !,q~ t !,p~ t !…, ~5.6!

where S(t),r (t),F(t),q(t),p(t) are the solutions to the
equations,

q̇52
p

M
, ~5.7!

ṗ52gp1V8~q!, ~5.8!

Ṡ52
1

M
S2r , ~5.9!

Ḟ52
1

M
SFr14gF1

2D

\
, ~5.10!

ṙ5
Sr 2

2M
1

2

M
F12gr2

2

S
V~2!~q! ~5.11!

under the conditions

„S~0!,F~0!,r ~0!,q~0!,p~0!…5~S0 ,F0 ,r 0 ,q0 ,p0!.
~5.12!

The equations forq andp are the backwards classical equa-
tions of motion~not the time reverse! andJ(t) is the Jaco-
bian of the transformation from (q0 ,p0) to „q(t),p(t)…

J~ t !5
]„q~ t !,p~ t !…

]~q0 ,p0!
5e2gt. ~5.13!
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Now let us consider the evolution of a quasiprojectorPG ,
associated with a phase-space cellG which is regular to order
e. Consider an operator that att50 has a maximum resolu-
tion in the phase space. We thus have att50

PG5E
G

dp0dq0
2p\

W~S0 ,S0/4,r 0 ,q0 ,p0!. ~5.14!

As it evolves under the action ofeMt this projector becomes

eMt@PG#5J~ t !E
G

dp0dq0
2p\

3W„S~ t !,F~ t !,r ~ t !,qcl~2t !,pcl~2t !…

~5.15!

within an error of order

~\/LP !lTrPG .

Performing a transformation from (q0 ,p0) to
„qcl(2t),pcl(2t)… we readily verify that

eMt@PG#5E
G t

dqdp

2p\
W„S~ t !,F~ t !,r ~ t !,q,p…

5PG t
8 1O~e8!, ~5.16!

whereGt is the phase-space cell obtained fromG through the
classical equations of motion ande85~A/LP !1/2 determines
the degree of regularity ofGt . Here we have

A5
\

2

4F~ t !

S~ t !
~5.17!

is the Wigner function area.P8 is clearly another qua-
siprojector associated with the phase-space cellGt . Essen-
tially we have

ieMt@PG#2PG t
8 iHS,c~\/LP !1/2TrPG . ~5.18!

From ~3.4! we know that within an error ofe8, PG8 is equal to
PG t

, where PG t
is the quasiprojector defined through the

Gaussian operator with parameters~S0,4S0,r 0!

iPG t
8 2PG t

iHS<TruPG t
8 2PG t

u,c8e8TrPG t
. ~5.19!

Assuming that during the evolution the error of the
Gaussian approximation is less thane8, we conclude from
~5.18! and ~5.19! that

ieMt@PG#2PG t
iHS,Ce8TrPG . ~5.20!

This is our main result: A projectorPG onto some
phase-space cellG evolves under the action of the dynamical
semigroup into a projectorPG t

associated with the phase-
space cellGt , which is obtained fromG through the classical
dissipative equations of motion. This is an approximate re-
sult, accurate within an error of ordere8. This parameter
increases with time solely because of the noise induced by
the environment. This implies that the margin of the qua-
siprojector increases with time evolution and the predictabil-
ity becomes gradually worse.

We can say that the effective region in phase space occu-
pied by a projectorPG consists of the cellG, plus the margin.
Thus the effective region the projector occupies increases in
a way that has nothing to do with the corresponding classical
equations of motion~unlike the shrinking due to dissipation
which is a classical feature!. A measure for this increase,
which can be attributed solely to the diffusion, is

m5
@G t#1@M 8#

@G t#1@M #

5
11e8

11e
.11e82e.11S ALP D 1/2@12~\/A!1/2#. ~5.21!

We can view this result as follows: Sufficiently coarse
grained observables~projectors onto large phase-space cells!
evolve under classical deterministic equations plus the action
of noise terms. These terms, stemming from the ignored de-
grees of freedom of both the system and the environment
induce an error of ordere8 to the classical equations of mo-
tions. The parameter measuring the size of the noise terms
and correspondingly the loss of predictability is the Wigner
function areaA @12#, which in general is an increasing func-
tion of time.

It may be shown that in the short time limit~t!g21! for
all initial operators~5.14! it is given by @12#:

A2~ t !5
\2

4
1
32

3

g2k2T2

\2 t4. ~5.22!

We obtain the same result, when considering the backward
time evolution of the quasiprojectors.

VI. HISTORIES

A. Construction of the decoherence functional

Using our previous results we now construct the phase-
space histories for the Brownian particle and study their de-
coherence properties. We have found how the quasiprojec-
tors associated with phase-space cells evolve in time. We can
use this knowledge in the calculation of the decoherence
functional. Our results are of use only when it can be written
as:

D~a,a8!5Trs@Pan
n Ktn21

tn
†...Pa1

~1!Kt0

t1@ r̃ #Pa
n8

1
...#Pa

n8
n
‡ ~6.1!

in terms of a superoperatorKt
t8 in the space of the reduced

density matrices. This is actually valid in the Markovian re-
gime @16#.

In the Caldeira-Leggett model the environment is taken to
be essentially infinite and thus the environmental degrees of
freedom remain very close to the state of thermal equilib-
rium. The correlations created will in general be of the order
of L21 and since the evolution has no memory their effect
will be negligible in a time scale of orderL21. Remembering
that in our regime we have assumedkT@\L, we conclude
that if the time interval between the two projections satisfies

t22t1.O~\/kT!,
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we can write the decoherence functional for two-time histo-
ries as

D~a,a8!5da2a
28
Tr~Pa2

2 eL~ t22t1!@Pa1
1 #r̃ t1

Pa
18

1
!, ~6.2!

or using the definition of the generatorM

D~a,a8!5da2a
28
Tr~e2M~ t22t1!@Pa2

2 #Pa1
1 r̃ t1

Pa
18

1
!. ~6.3!

We can assign a probability measure

p~Ca!5Tr$~e2M~ t22t1!@Pa2
2 #Pa1

1 r̃ t1
Pa1
1 % ~6.4!

to the historyCa if the probability sum rules are satisfied. A
sufficient condition for this is the vanishing of the off-
diagonal elements of the decoherence functional.

B. Approximate decoherence and determinism

The sum rules are not satisfied exactly in our case, but
only within an error of ordere. A good condition for this
approximate consistency is

uTr~e2M~ t22t1!@Pa2
2 #Pa1

1 r̃ t1
Pa

18
1

!u

,e(
a1

Tr~e2M~ t22t1!@Pa2
2 #Pa1

1 r̃ t1
Pa1
1 !. ~6.5!

Let us concentrate on the particular case of histories that
correspond to the evolution of phase-space cells along the
classical trajectories. That means, we consider the set of his-
toriesC15(P1 ,P2) andC25( P̄1 ,P2) whereP1 andP2 are
quasiprojectors associated with the cellsG1 andG2 andG2 is
the cell obtained from the classical evolution ofG1. In order
to achieve minimum error in our estimations we restrict our
quasiprojectors to have minimum resolution in phase space.
The condition~6.8! reads

Tr~e2M~ t22t1!@P2#P1r̃ t1
P̄1!

,e~Tr$~e2M~ t22t1!@P2#P1r̃ t1
P1!1Tr~e2M~ t22t1!

3@P2# P̄1r̃ t1
,P̄1!%. ~6.6!

From the analysis in the previous section, we know that
within an error of order@A(t22t1)/LP #1/2TrP1

e2M~ t22t1!@P2#5P1 . ~6.7!

This means that the left hand side in~6.6! is of order

@A~ t22t1!/LP #1/2TrP1

and the right hand side of order

eTr~P1r̃ t1
!,eTrP1 .

Thus the probability sum rules are satisfied within an order

e5@A~ t22t1!/LP #1/2,

A takes values between\/2 and its asymptotic value which
is of the order of the thermal fluctuations in phase space.

Therefore for a macroscopic phase-space celle is a small
number and decoherence is good. It is clear that the degree of
decoherence is better in the case of a Hamiltonian system.
We can thus compute the conditional probability, that the
particle being withinG1 at time t1 will be within G2 at time
t2. This is clearly,

p~G1 ,t1→G2 ,t2!512O~e!. ~6.8!

Therefore up to an order ofe there is good agreement be-
tween the predictions of classical and quantum dynamics for
the evolution of the Brownian particle. This agreement is
best when the phase-space cells are regular and the time
evolution preserves this regularity. These results are inde-
pendent of the initial state of the system. One might expect
that the degree of decoherence would be in an inverse rela-
tion to the degree of predictability. Here, they are essentially
the same, as in the case where the environment is not
present.

The extension of this result ton-time histories is straight-
forward. Consider the historyC5(P1 ,t1 ;P2 ,t2 ;...;Pn ,tn)
wherePi is the maximum resolution quasiprojector associ-
ated with a cellGi andGi11 is obtained fromGi through the
classical equations of motion. We construct fromC a set of
histories by replacing one or more of thePi ’s with P̄i , and
define the parametere5max@A(t i2t i21)/LP #1/2. If we as-
sume that for the intermediate times

min~ t i112t i !.O~\/kT!

and that the dynamics preserve the regularity of the cells to
an ordere, then this set of histories satisfies the probability
summation rules to this order.

VII. CONCLUSIONS

In this paper, we have studied histories corresponding to
the evolution of phase-space cells in quantum Brownian mo-
tion models with ohmic dissipation and Markovian dynam-
ics. We constructed these histories using the generalization
~3.14! of the quasiprojectors used by Omne`s. The estimation
~4.1! for the validity of the Gaussian approximation has en-
abled us to establish, how those quasiprojectors evolve.

We showed that as long as the phase-space cell is large
and regular, histories corresponding to the evolution accord-
ing to the classical deterministic equations of motion ap-
proximately satisfy the sum rules. The order of magnitude of
the corresponding error depends only on the Wigner function
areaA ~a function only of the time difference between pro-
jections!. A(t) can be computed as the solution of the sys-
tem~5.7!–~5.11! under the initial condition~5.12!. It starts as
containing purely quantum uncertainties att50 and at a time
scale ofg21 becomes of the order of magnitude of its asymp-
totic value, which corresponds to thermal fluctuations.

There are three time scales in our model, which determine
qualitative changes in the description of the dynamics: the
Markovian time tM5\/kT, the decoherence time
td5(\/gkT)1/2 and the relaxation timet r5g21. For times
t!tM dynamics are not Markovian and therefore we cannot
talk about predictability. For timest such thattM,t,td ,
sufficiently large phase-space cells evolve almost under de-
terministic equations of motion and the details of the poten-
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tial are not of importance in the increase of the fluctuations.
At t5td the thermal fluctuations overcome the quantum ones
@12#. For t.td the degree of decoherence and predictability
gradually worsens and is destroyed for cells with an area less
than the thermal uncertainty. For these cells any sense of
predictability has been lost att5t r . In the contrary suffi-
ciently macroscopic cells, continue to evolve within a good
approximation according to the classical equations of motion
even at times larger thang21. Eventually at long times, ap-
proximately deterministic evolution will break down, be-
cause the dissipative nature of the evolution tends to shrink
the phase-space cells, until their area is of the order of mag-
nitude of the thermal fluctuations. We therefore see that the
breakdown of predictability is dependent mainly on the pa-
rameters of the environment and the structure of the potential
is largely irrelevant, unlike the unitary case. This comes
probably from the fact that we have considered an one di-
mensional problem. It is to be expected that in a system with
more degrees of freedom, time parameters of the potential
~i.e., the Lyapunov exponents of the classical solutions! will
play a more important role in the determination of when
classical predictability breaks down.

Perhaps contrary to our expectations, the coupling to the
environment tends to make the decoherence properties of
histories worse. This means that histories corresponding to
the evolution of phase-space cells are not the ones that give
the sharpest correspondence with a deterministic classical
description. This is to be expected, since the classical de-
scription of quantum Brownian motion is that of a stochastic
process in phase space.

Essentially, there are two mechanisms that produce deco-
herence. One is the interaction with an environment and the
other is the existence of phase-space projection operators that
have an intrinsic almost deterministic time evolution. In the
case of purely Hamiltonian dynamics only the latter appears.
In our case, we have both, but it is clear that again the latter
is the dominant one. This is attributed to the simplicity of the
corresponding classical equations, in which the effect of the
environment is contained only within the term22gp. It is
therefore natural that observables close to the ones used in
purely Hamiltonian systems will decohere giving rise to ap-
proximate predictability.

With those results we have achieved three things: First,
we have generalized the results of Omne`s on classical deter-
minism for a class of open systems. In fact, our results are
valid for any Markovian equation of the Lindblad type@18#,
with environment operatorsLn linear in position and mo-
mentum. Second, we have verified the validity of classical
equations of motion with linear dissipation, as a consequence
of the underlying quantum mechanical evolution and suffi-
cient coarse graining. Third, taking quantum Brownian mo-
tion as a toy model, we have obtained a picture of the be-
havior of collective variables in many body systems and the
quasiclassical behavior of these variables.

Finally, we would like to compare our results with the
ones obtained in@17# using the quantum state diffusion pic-
ture for the quantum Brownian motion. For the case of the
two-time phase-space historiesC5~G1,G2! and under the as-
sumption that they decohere, the authors gave for the asso-
ciated probability the expression:

p~C!5E
G2

dp2dq2E
G1

dp1dq1J~p2 ,q2 ,t2up1 ,q1 ,t1!

3 f ~p1 ,q1 ,t1!, ~7.1!

where f (p,q,t) is a classical probability distribution satisfy-
ing the Fokker-Planck equation andJ is the associated
propagator. We can verify that this result is equivalent to
ours in the particular case of an harmonic potential, where
the propagator is Gaussian centered around the classical
path. If the volume of the phase-space cells is much larger
than the Wigner function areaA(t) associated with the
propagator@12#, then the propagation is within an error of
order e5~A/LP !1/2 a d function around the classical path
and the conditional probability is found

p~G1 ,t1→G2 ,t2!512O~e!.
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APPENDIX: PROOF OF THE THEOREM

We are going to give the proof for the theorem stated in
Sec. IV. It follows the reasoning of the similar proof of
Hagedorn for the case of closed system, where the reader can
refer for further details.

The evolution equation for the density matrices in the
Markowian regime~2.11! corresponds to the action of an
one-parameter semigroup with generatorL on the state
space. We can write

L5S 1U,

whereS andU are generators of one-parameter semigroups
given by

S @r#5
1

i\
@p2/2M ,r#1

g

i\
@x,$r,p%#2

D

\2 †x,@x,r#‡,

~A1!

U@r#5
1

i\
@V~x!,r#. ~A2!

First we establish how the class of states described by the
Gaussian density matrices~3.11! evolve underS andU. For
short timest (t,t!g21) we have

ieS t@r~S0 ,F0 ,r 0 ,q0 ,p0!#2r~S,F,r ,q,p!iHS,K~ t/t!2,
~A3!

where

q5q01
p0
M

t, ~A4!

p5p022gp0t, ~A5!
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S5S01S 2M S0
2r 0D t, ~A6!

F5F01S 1M S0F0r 024gF01
2D

\ D t, ~A7!

r5r 02S 1

2M
S0r 0

22
2g

M
F022gr 0D t. ~A8!

For the most general quadratic potential

V~x!5a~x2q!1 1
2 ~x2q!2 ~A9!

we can easily verify

eUt@r~S0 ,F0 ,r 0 ,q0 ,p0!#5r~S0 ,F0 ,r 01bt,q0 ,p02at!.
~A10!

For the case of a general potential satisfying the conditions
we stated in Sec. IV, we define

Wq~x!5V~q!1V8~q!1 1
2V

~2!~q!~x2q!2. ~A11!

Denoted byUV andUWq
the generators corresponding to

V(x) andWq(x), respectively. We have:

ieUVt@r#2eUWq
t@r#iHS

2 <
t2

\2 „r,~UV2UWq
!2@r#…

~A12!

in the Hilbert-Schmidt inner product. Writing:O
5uUV2UWq

u we see that the right hand side reads

t2

\2 ~O @r#,O @r#!5
2t2

\2 Tr~r2O22rOrO!, ~A13!

whereO is the operatoruV(x)2Wq(x)u acting on the Hilbert
spaceHc . In the coordinate representation this quantity
reads

2t2

\2 E dx dyr~x,y!r~y,x!O~x!@O~x!2O~y!#

<
2t2

\2

S

2p\ S p\

S/41F D 1/2
3E dx expF2

1

\

SF

S/41F
~x2q!2GO2~x!.

~A14!

Following the treatment of Hagedorn we can split the in-
tegral into two sectors: D5$x;ux2qu<\a% andD̄5R2D
wherea,1/2.

The first part~integration overD! is found to be smaller
than

2t2

\2 b2~Trr2!1/2\6a ~A15!

while the second part is bounded by

2t2

\2 ~2 Trr2!1/2 exp@M\2a2\2a21#. ~A16!

Assume that

S SF

S14F D 21

<N\22p ~A17!

for someN.0 andp<a. This implies the existence ofd.0
such that

M2S SF

S14F D\21<M2\2p21/N2

for \,d and takinga,~1/2!2p there exists constantc2 such
that

exp@M\2a2\2p12a21/N2#,c2\
6a.

Thus we establish that when (SF/[S14F])21

<N\22p,qeK, for eachN.0, p,1/2,a,~1/2!2p and t.0
there existsC.0 andd.0, such that for\,d

ieUVt@r#2eUWq
t@r#iHS,C\3a21~Trr2!1/2t. ~A18!

We now have expressions for the evolution induced by
the generatorsS andU. Taking a discretization of the time
interval and assuming uniform convergence for the solutions
of the differential equations we can combine them using the
Trotter product formula

eLt5 lim
N→`

~eS t/NeUt/N!N, ~A19!

to get our desired result

ieLt@r~S0 ,F0 ,r 0 ,q0 ,p0!#

2r„S~ t !,F~ t !,r ~ t !,q~ t !,p~ t !…iHS,C\l. ~A20!
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